
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 12:  State Monads
o State Monad: Creating a Stack-Based Evaluator
o State Monad: General Principles
o Control.Monad.State
o Examples using the State Monad



There's a problem brewing in Monad 
World,  and it has to do with our 
assumption that functions should take 
pure (non-monadic) values and return 
monadic types, for example, a function

f :: a -> Checked 
can decide whether to generate an Ok, a Warning, or an Error, but can't know whether 
such was generated in the past.  

So far, Monads allow us to focus on a foreground value while passing along a background 
state, and

o We can WRITE to the state (modify the future state), but
o We can't READ the state (get information  from the past). 

The State Monad

x x'f

?? What if  f wants to modify its 
behavior based on whether it's
input is wrapped in a Warning? Ok



The State Monad In Detail:

In the Checked Monad, the bind 
operator in the background can
read and write the state in a 
generic way, but in the foreground, the 
functions can NOT read the
state and react to it.

NOT enough, we need to be able
to read and write the state in a 
controlled way, while keeping the
foreground/background distinction. 



The State Monad: A Stack-based Evaluator
Let us consider a concrete example of why we might want to do this: a stack-based evaluator 
for arithmetic expressions. 

We need to read and write the stack, but we want to keep all the code for the stack in the 
background, and focus on our foreground computation:

8
6
2

---

2       x = 8    
--- y = 5

3
2       x = 8    

--- y = 5

6       x = 8    
--- y = 5

Every push writes to the 
background stack, and 
every pop reads from the 
background stack. 

There is constant 
interaction with the 
background state!

=> 6



The State Monad: A Stack-based Evaluator
This is exactly the kind of code that you would
write  in an imperative language, in which you 
have some  data structure in the background 
and you  concentrate on your foreground 
computation:



The State Monad: A Stack-based Evaluator
What we will do is consider the whole computation to be passing a long a pair consisting 
of the foreground value and the background state:

(      Integer     ,          [ Integer ]      )

foreground           background
value                    stack

Supposing we start with an empty stack and a 0 value, we could think of the computation 
going like this, with the background stack being hidden:



The State Monad: A Stack-based Evaluator
But then how to write our code?   We can't just do this:

There is no monad, no foreground/background, and we are back where we started from   
two weeks ago!



The State Monad: A Stack-based Evaluator
The solution is to use a curried version of push that accepts two arguments, instead
of a pair:

push :: (Integer, [Integer]) -> (Integer, [Integer])
push (x, xs) = (x, x:xs)

push :: Integer -> [Integer] -> (Integer, [Integer])
push    x       =  \xs       -> (x ,      x:xs     )

Notice that this version keeps the foreground parameter, and returns a background data type 
– a function on the background stack:

push :: Integer -> ([Integer] -> (Integer, [Integer]))
push    x       =  (\xs       -> (x ,      x:xs     ))

foreground
value

background 
function on a stack



The State Monad: A Stack-based Evaluator
push :: Integer -> ([Integer] -> (Integer, [Integer]))
push    x       =  (\xs       -> (x ,      x:xs     ))

How does this function work?   It returns a function which pushes its value on a stack:

Main> push 1 [2,3,4]
(1,[1,2,3,4])
Main> sf = push 1
Main> sf []
(1,[1])

Main> sf [2,3,4]
(1,[1,2,3,4])
Main> :t sf
sf :: [Integer] -> (Integer, [Integer])

foreground
value

background 
function on a stack

push 1 => sf = \xs -> (1, 1:xs) 

[2,3,4]

\xs -> (1,1:xs) sf

(1,[1,2,3,4])



The State Monad: A Stack-based Evaluator
But this isn't much better without monads:



The State Monad: A Stack-based Evaluator
Clearly we want to make this a monad so we can use do expressions:



The State Monad: A General Framework
But let's generalize it so that it does not have to work with stacks as lists or even stacks 
at all!  Let's just assume that we have a foreground value and a background state. 
Remember that we have to create a data type that we make an instance of Monad, so here 
is a polymorphic version, with a foreground type a and a background type s:

Now we have to make it a Functor, which means applying a function f to the 
foreground value being passed along, without changing the actual state:

State

sts (x,s')

State

sts (f x,s')

fmap f



Then we have to make it an instance of Monad by defining the usual functions:

Return just inserts a value into the foreground without changing the state at all:

State

s (x,s)return x  => 

The State Monad: A General Framework



State

st's' (x',t')

State

sts (x,s')

(State st) >>= f  =>  

f

Bind more or less composes the state transition functions:

State

The State Monad: A General Framework



The State Monad: A Stack-based Evaluator
Now we can program our stack-based evaluator quite nicely:

Main> runState prog []
(6,[])

Main> runState prog [2,3,4]
(6,[2,3,4])



The State Monad: Basic Utility Functions
There are a number of basic functions for manipulating states that come in handy and are 
defined in Control.Monad.State:

First we have functions to initialize ("run") the state monad by providing an initial value 
for the state, and return either the pair or just the foreground value:



The State Monad: Basic Utility Functions
Next, we have functions for basic communication between the background and 
foreground: 

Main> example
(0,[1,2,3])



The State Monad: A Improved Stack-based Evaluator
Now we COULD rewrite our stack code so that it doesn't refer to the State at all:

Main> evalState prog []
6

Main> runState prog []
(6,[])

Main> runState prog [2,3,4]
(6,[2,3,4])



The State Monad: A Improved Stack-based Evaluator
It is instructive to compare this with Python:



Control.Monad.State
Everything we have done is consistent with the Haskell library 
Control.Monad.State with one small exception: 

The Control.Monad.State library does not use a constructor State, but a 
function state, so anywhere you would use the constructor State you have to use 
state:

That's it! Otherwise it is just as we have seen.... let's try a few more examples!



Control.Monad.State



Control.Monad.State
As a final exercise, let's compare a Python Random-Number Generator 
with the same exact algorithm in Haskell:


